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Abstract

Langley plots are used to calibrate sun radiometers primarily for the measurement
of the aerosol component of the atmosphere that attenuates (scatters and absorbs)
incoming direct solar radiation. In principle, the calibration of a sun radiometer is
a straightforward application of the Bouguer–Lambert–Beer law V = V0e

−τ·m, where5

a plot of ln(V ) voltage vs. m air mass yields a straight line with intercept ln(V0). This
ln(V0) subsequently can be used to solve for τ for any measurement of V and calcula-
tion of m. This calibration works well on some high mountain sites, but the application
of the Langley plot calibration technique is more complicated at other, more interest-
ing, locales. This paper is concerned with ferreting out calibrations at difficult sites and10

examining and comparing a number of conventional and non-conventional methods
for obtaining successful Langley plots. The eleven techniques discussed indicate that
both least squares and various non-parametric techniques produce satisfactory cali-
brations with no significant differences among them when the time series of ln(V0)’s are
smoothed and interpolated with median and mean moving window filters.15

1 Introduction

Langley plots are used to determine the instrumental constant V0, i.e., to calibrate, sun
radiometers from a series of measurements Vi at various air masses mi . According to
the Bouguer–Lambert–Beer (BLB) law, the optical depth τ is determined from pairs of
points (Vi , mi ) that are fit to the linear equation20

ln (V ) = ln (V0)− τ ×m. (1)

If τ = constant, the equation defines a straight line; the graph is called a Langley plot.
When data are not perfect and contain outliers (τ is not always the same for all mea-
surements when time t and air mass m(t) change), the Langley plot is obtained after
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removing the outliers. Thus, one can still obtain V0 from Eq. (1). The derived instru-
mental constant V0, if valid, is used to retrieve the optical depth τ(m) for any measured
V and calculated m: τ(m) = −m−1 ln(V/V0). The main purpose of sun radiometer is to
retrieve the optical depth of atmospheric constituents, mainly aerosols, but also O3,
CO2, SO2, H2O, etc. from the direct beam’s atmospheric transmittance V/V0.5

After multiplying the transmittance by the extraterrestrial solar flux one obtains the
flux measured by the instrument. The flux at the site of the measurements can be used,
e.g., to validate radiative transfer models (Mlawer et al., 2000). The Multi-Filter Rotating
Shadowband Radiometer (MFRSR) (Harrison et al., 1994) and the Rotating Shadow-
band Spectroradiometer (RSS) (Harrison et al., 1999) measure the diffuse components10

of the flux, as well as, the direct. These instruments were calibrated via the Langley
method and with standard lamps (Kiedron et al., 1999). Schmid and Wehrli (1995)
concluded that when retrieving optical depth the calibration with Langleys is superior
to the calibration based on standard light sources, however, the quality of calibration by
Langleys depends on the site at which the instrument is located.15

It is often overlooked, that the existence of the straight line in the data set does not
imply that the actual τ is constant. The existence of a straight-line fit is the necessary
condition, but not a sufficient one for the constancy of the optical depth. Shaw (1976)
may have been the first to point this out. He observed that in cases when the opti-
cal depth of aerosols is a parabolic function of time the pairs (Vi , mi ) create a perfect20

straight line, but its intercept is not the actual V0. Then the intercept is biased, and thus
it cannot be used as a calibration constant. Several authors: Tanaka et al. (1986); Nieke
et al. (1999); Harrison et al. (2003); and Campanelli et al. (2004) mention this problem
more or less explicitly. More recently, Marenco (2007) devoted his paper to this phe-
nomenon. Equation (1) implies that when the actual τA contain a varying component25

that is inversely proportional to the air mass

τA = τ +ε/m (2)
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the data align along the straight line with a slope τ, but the intercept is now (ln(V0)−ε).
The hyperbolic dependence 1/m produces a straight line.

The time series of lnV0’s over several days are used to weed out cases when ε is
not zero and estimate the true calibration. An individual Langley plot cannot identify the
value of ε. The data (Vi , mi ) do not contain information on the presence of a nonzero5

ε.
The process of removing outliers from the Langley plot may actually facilitate select-

ing a straight line from the data that will contain a spurious value of ε. Different methods
of removing outliers may cause an inadvertent selection of a different value of ε, some
larger and some smaller (positive or negative).10

We will call a Langley plot with a nonzero ε an anomalous Langley plot. The results
from the anomalous Langley plots can be weeded out only (a) when a time series, an
ensemble of {V0}, is analyzed, or (b) if additional measurements are performed. Method
(a) is the most common procedure, as usually there are no other available independent
measurements. One example of an additional procedure (b) that may help in identifying15

anomalous Langleys is measuring the flux from the solar aureole (Tanaka et al., 1986).
The experimental perspective on Langley plots is as follows: mountain tops like

Mauna Loa in Hawaii or Izaña on Tenerife provide environments where the constancy
of the optical depth is frequently assured, and, thus, the Langley plots do not pose dif-
ficulties in their analyses; these results are rarely controversial. In most places where20

sun-radiometers are deployed, periods of stable atmospheres are much less common,
and they are frequently interrupted by cloud passages, changes in atmospheric condi-
tions like varying humidity that promulgate aerosol size changes, and by aerosol plume
incursions. These events create outliers, non-linearity, and anomalous Langley plots.
Our paper is directed to the practitioners of Langley calibrations at the sites that are25

difficult rather than the easy ones like mountaintops.
This paper is not concerned with the identification of anomalous Langley plots. Also,

we will not deal with issues of ambiguities related to the definition of the air mass when
various air constituents, aerosols, in particular, are present and higher order effects like
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atmospheric refraction’s dependence on wavelength impact air mass. In other words,
we presume that the BLB as given by Eq. (1) is valid. Our comparisons use real data
from real sun radiometers that contain data departing from the BLB law chiefly because
air masses of Rayleigh scattering and aerosols are different, and the latter is usually
known only approximately. The main objective of the paper is to analyze the efficacy5

of non-parametric and least squares methods of straight line fitting to identify Langley
plots useful for calibration.

Non-parametric statistics is the branch of statistics where no a priori assumptions
on the statistical distribution of variables are made (Kendall, 1938). Non-parametric
does not mean that there are no parameters, but that the involved parameters have no10

assigned statistical properties a priori. For instance, a histogram is used as a substitute
for the probability distribution function rather than, for instance, a fitted Gaussian to the
histogram. For Langley plot processing the non-parametric methods are particularly
appropriate. We do not know the statistical distribution of outliers in a Langley plot even
if we understand their physical origins. We do not know the statistics of V0’s in a time15

series of them, but we still want to get the best estimate of the calibration constant of
a sun radiometer.

For simplicity of notation in the rest of the paper Eq. (1) is replaced with a linear
equation: y = α+βx where y = ln(V ),x =m, α = ln(V0) and β = −τ.

The organization of the paper is as follows. In Sect. 2 we define a Langley plot.20

In Sects. 3 to 7, eleven methods of finding a Langley plot are described: in Sect. 3,
two least squares methods; in Sect. 4, the so-called objective algorithm method; in
Sect. 5, four non-parametric regressions methods following Thiel (1950) and Siegal
(1982); in Sect. 6, a non-parametric method of identifying outliers and a modified Siegal
(1982) method with sequential removal of outliers; and in Sect. 7, a method of analyzing25

histograms of slopes and intercepts. In Sect. 8 we describe the set of data used in
the comparisons for all methods. Section 9 presents results of these analyses and
comparisons. The final section summarizes the paper.
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2 Our definition of a Langley plot

For any set of points P = {(xi ,yi ) : i = 0, . . .,n−1} and for any nonnegative δ find a sub-
set L ⊂ P for which a line y = α+βx can be defined such that one of the following
metrics

∆ =

√√√√1
k

k−1∑
j=0

r2
j or

1
k

k−1∑
j=0

∣∣rj∣∣ or max
j

∣∣rj∣∣ (3)5

that measures the magnitude of residuals, is smaller than δ (∆ < δ) on the set L, where
the rj = yj−α−βxj are residuals and k is the number of points in the subset L. We refer
to the points of the subset L as δ-collinear. The subset L is not unique, or it may not
exist when δ is too small, ignoring subsets consisting of two points only. Therefore, we
add a requirement that L should be the largest subset with this property of residuals.10

In other words, a Langley plot is the most numerous δ-collinear subset of set P . The
size of the set L, i.e., the number of points that “actually” define the line is important
in judging the viability of the resulting Langley plot, i.e., the subset L. The quotation
marks around “actually” are justified for non-parametric methods, because they do not
identify outliers explicitly.15

This problem is related to the pattern recognition problem. The human eye and mind
are able to solve the problem in a qualitative way very quickly by identifying points that
are approximately collinear. The human eye and mind can perform this task regard-
less of the plot orientation. The result is rotationally invariant, i.e., neither of the axes
x or y is treated preferentially. Furthermore, the human eye and mind can almost in-20

stantaneously identify a data set P that has no potential of containing any subset L of
a significant size and rejects this case as not providing a viable Langley plot. Mathe-
matically this problem reduces to the straight line fit and to a method of identifying and
removing outliers. Any one of the criteria (Eq. 3) can be used to define the quality of
the fit.25
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Some researchers (Augustine et al., 2003) seemingly avoid the issue of removing
outliers altogether by selecting clear sky days based on the method of Long and Acker-
man (2000) for which measurements from collocated broadband shaded and unshaded
pyranometers are required. This approach, while effective, misses many Langley plots
from partially clear days, so it does not fit the scope of this paper. Furthermore, many5

sites with sun radiometers do not have collocated pyranometers.

3 LSF with Sequential Removal of Outliers (SRO)

This is the most straightforward and, probably, the most commonly used method in
existence. The LSF is applied to the set of points P and the largest residual (negative
or positive) is removed. Then the root-mean-square (rms) of residuals is calculated.10

The process is repeated until either rms≤ rmsmax or the number of remaining points
k = kmin, with rmsmax and kmin chosen based on experience. Usually, most of the out-
liers are negative (e.g., cloud passages), but there are less frequent cases when the
atmosphere has periods of stability at larger τ than when it is not stable during a day.
For this case the outliers at smaller τ are positive. For this reason the method must15

allow removal of the positive outliers. On our data set we note that we obtained good
results (meaning that both the number of false and missed identifications of Langley
plots were small) when about every 5th outlier that was removed was a positive one.
However, we do not claim the value of five is a general rule.

Usually measurements with sun radiometers are performed at equal time steps. This20

means that the values of x, the air masses, are not evenly distributed. For one minute
intervals ∆x at x = 2 might be 10 times smaller than ∆x at x = 6 at mid latitudes, where
the air mass x is the Rayleigh air mass (Kasten, 1965). Some researchers recognized
the bias introduced by the uneven distribution of x on α due to the larger number
of points at low air masses. For example, Forgan (2000) performed Langley plots on25

(y/x, 1/x) for his sun photometric studies. In the Dobson ozone spectrophotometer
community Langley plots for the ozone extraterrestrial constant (ETC) are performed
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in coordinates (y/x, 1/x) to give a smaller weight to points that are more sparse at
large air masses (Dobson and Normand, 1958). Note, however, that for the Brewer UV
ozone spectrophotometers the standard equation y = α+βx is used (Redondas, 2005;
Ito et al., 2014).

The change of variable from x to 1/x leads to the linear equation y/x = β+α(1/x).5

This approach is equivalent to applying weights w = 1/x2 to the LSF of the original
equation y = α+βx. Herman et al. (1981) considered applying other weighting meth-
ods.

A sequential removal of outliers can be applied and the method may have the same
terminating criterion in terms of rms< rmsmax, however, the residuals must be calcu-10

lated for the equation y = α+βx.
We label these two methods LSFSRO−x and LSFSRO−1/x, where the subscript SRO

stands for “sequential removal of outliers”.

4 The Objective Algorithm of Harrison and Michalsky

We describe some aspects of the Objective Algorithm (OA) because (a) its develop-15

ment is an excellent example of how a mathematical method was stimulated by the
human eye-and-mind approach, (b) it is based on physical phenomena that are re-
sponsible for the curve shape and the outliers, and (c) it is basically a non-parametric
method despite the fact that LSF is used for the final filtering.

When Harrison and Michalsky (1994) developed the OA they tested it by comparing20

a set of cases from 384 days using 500 nm channel data where α and β were obtained
by the eye-and-mind method of Michalsky who disqualified the non-viable cases and
identified the ones that, after the removal of outliers, produced Langley plots. Then he
performed the LSF on the retained points. The OA did not try to produce “an artifi-
cial intelligence” emulating Michalsky’s approach. Instead it identified several physical25

phenomena (like cloud passages, overcast skies, curvature in the plot, etc.) that were
responsible for outliers and the non-linearity of the Langley plots. This justifies the term
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“objective” in the method’s name. The method applies consecutive filters: each meant
to deal with outliers produced by one of the identified physical phenomena that pro-
duced them. The last filter is LSF that shaves off outliers larger than 1.5 of the SD of
all residuals of points that survived the previous filtering.

The successful Langley plot for the OA is the one for which rms ≤ 0.006 (of retained5

residuals) and the k/n ≥ 1/3. The value of rmsmax = 0.006 was chosen to maximize
the agreement with the eye-and-mind Michalsky method using 143 cases of success-
ful Langley plots. The value of rmsmax is valid for the wavelength λ = 500 nm. For other
wavelengths the rmsmax will be different because aerosols’ impact on outliers is wave-
length dependent.10

5 Non-Parametric Fits (NPF)

LSFs use means of {xi}, {yi}, {x
2
i } and {yi ,xi}. The so-called breakdown point of the

mean is 0 %, i.e., a single outlier can significantly change the value of a mean. On the
other hand, the breakdown point of a median is 50 %. Theil (1950) opened the field of
the so-called non-parametric regression fits that are based on medians and, thus, are15

much more robust.
The set P produces an n×n matrix of all possible slopes {bi ,j}, where bi ,j = (yi −

yj )/(xi −xj ). The matrix is symmetric with a diagonal that has indeterminate values. Its
upper or lower triangles each have n(n−1)/2 points. They are used to calculate the
slope:20

β = med
i<j
{bi ,j} (4)

From the slope β the intercept is obtained also as a median:

α = med
i
{yi −βxi} (5)
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Theil’s (1950) algorithm robustness is 29.3 %, which means that when outliers ex-
ceed 29.3 % of all points the performance of the algorithm is not guaranteed; at this
level it reaches its breakdown point. The increase of robustness to 50 % was achieved
by Siegel (1982) with his method of “repeated medians” that uses two medians in Eq.
(4) rather than one: one median along the rows of the matrix {bi ,j} and then the median5

of this column of medians

β = med
i

{
med
j

{
bi, j
}}

(6)

where all n(n−1) values of the matrix {bi ,j} are used.
The Langley plot is chiefly concerned with obtaining the intercept and, unlike Theil’s

focus, the slope is secondary. Instead of obtaining the slope first, one can obtain the10

intercept first. From the matrix {ai ,j} of intercepts: ai ,j = (yjxi −yixj )/(xi −xj ) one gets
the intercept α with Eqs. (4) or (6) and then gets the slope from

β = med
i

{
yi −α
xi

}
(7)

The weighted median methods (Jaeckel, 1972) can also be applied. The uncertainty
of slopes bi ,j stems from the measurement errors of yi values. The uncertainty is15

inversely proportional to |xi −xj | if uncertainties for yi are the same. When |xi −xj |
is small, the measurement errors have inversely proportional 1/|xi −xj | larger impact

on the slope. For the intercepts the weights for ai ,j are proportional to
∣∣xi −xj∣∣/(x2

i +

x2
j )1/2. The exact formulas for using weighted medians for Theil (1950) methods can

be found in Birknes and Dodge (1993). The weighted medians, one would expect,20

should offer an advantage when xi are not uniformly distributed, which is exactly the
case for air masses. However, our simulations with weighted medians did not confirm
this expectation. In fact, in our experience the weighted median methods introduced
unacceptable biases in α and β.
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The LSF methods have several advantages over NPF methods. They perform bet-
ter when data have no outliers, but have uniformly distributed noise among y values,
particularly when the noise is Gaussian. The solutions for α and β in LSF methods
are closed-form formulas derived from smooth analytic functions. The NPF methods
are inherently discrete. They depend on medians. The “granulation effect”, in a small5

data sample may lead to errors because of discontinuities. The residuals from the LSF
methods are unbiased (sum of residuals equals zero), while this is not guaranteed for
the methods based on the discreet processes. Theil (1950) and Siegal (1982) NPF
methods do not identify outliers explicitly. α and β are generated for any set P , but
the outliers must be identified to get the value of the metrics and reach the decision10

whether these particular α and β define a Langley plot or not. The last problem we
solved by using the following method of outlier identification.

For a given α and β we calculate residuals ri and sort them (rj ≤ rj+1), where index
j points to the index ij of the unsorted sequence. Then we calculate the sequence
rmsj ≤ rmsj+1. The rmsj is calculated on residuals from the smallest to the (j −1)th.15

Each index ij for which rmsj > rmsmax points to an outlier. If the number of outliers is
smaller than 2n/3, α and β define a Langley plot. The remaining residuals may be
de-biased by performing the LSF on the remaining points. This will reduce the rms of
residuals, but also slightly change α and β.

We chose to use rms (the first criterion in Eq. 3) because the data set for OA, which20

is used in comparisons, is based on rms metrics. The method of identifying outliers in
the set P , when α and β are given, we label OSM (outlier sorting method). In Sect. 9
we also apply the OSM to the results obtained from the OA method.

We described four NPF methods of finding a Langley plot. We label them as TOSM-β,
TOSM-α, SOSM-β and SOSM-α, where T and S stand for Theil and Siegel, respectively,25

and α and β stands for the “intercept first” and “slope first” methods and OSM for the
outlier sorting method with a final residual de-biasing LSF. The de-biasing on average
increases the intercept α. At most (SOSM-β method) α increases by 0.0028 (0.28 % in
terms of V0).
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6 Identifying outliers from the dispersions of slopes

Neither the Theil (1950) nor Siegel (1982) methods identify outliers explicitly. They
produce the slope and intercept directly for any set P . In this section we describe a non-
parametric method that identifies outliers without calculating the values of residuals.

For each row i of matrix {bi ,j} we calculate di which is the measure of dispersion5

among the points of the i th row. di can be the SD of the row or its median absolute de-
viation (MAD). We used the latter. The “largest” outlier is the one for which di is largest.
Then we remove row i and column i from the matrix {bi ,j} and calculate new values
di and find the one that is the largest, and so on. The largest dispersion Dm, where m
is the index of the iteration process, forms a descending sequence with a decreasing10

steepness. Large drops in the sequence indicate a removal of a significantly “large”
outlier. The largeness or smallness of outliers should be understood as their values of
dispersion, though it may correlate very well with the value of residuals from the straight
line y = α+βx.

One can analyze the sequence of {Dm}. Once it flattens, this indicates that points that15

remain approximate a straight line and the process of outlier removal can be stopped,
but if {Dm} remains strongly decreasing it implies that there is no “collinear” subset in
the data. We did not explore the potential of finding a criterion for stopping the itera-
tion process from features and behavior of the {Dm} sequence. Instead we used the
remaining points to calculate rms and stopped the process when rms became smaller20

than rmsmax.
We applied the same method to the matrix of intercepts {ai ,j} and obtained simi-

lar results, i.e., the sequences of removal of “large” outliers for both {ai ,j} and {bi ,j}
matrices were the same, but not identical when only “small” ones were left.

This approach of outlier identification and removal led us to a modified Siegel (1982)25

method. At each stage when a row and a column are removed we calculate new αm
and βm with the Siegel (1982) method. Initially we were surprised that after a removal
of an outlier the new values of αm+1 and βm+1 were not always changing significantly
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until we realized that this is a consequence of the robustness of the Siegel method. The
method is stopped when rmsm ≤ rmsmax, and the result is retained if (n−m)/n > 1/3.
This method of finding a Langley plot we label SSRO-β or SSRO-α, where SRO stands
for a sequential removal of outliers. Keep in mind that SRO from this section is strictly
a non-parametric method unlike SRO in the Sect. 3 on LSF methods.5

7 Histograms of slopes and intercepts

From values bi ,j , say in the lower triangle of the matrix {bi ,j}, we generate a histogram
Hβ(b,∆b) where ∆b is the width of the histogram’s cells. The cell b contains points b ≤
bi ,j ≤ b+∆b. We find bmax for which H(b,∆b) is maximum and identify the set of all xk
arguments that contributed to slopes within the cell. Points xk are ∆b-parallel. For each10

xk we calculate a count ck , which is the number of pairs the point xk produced a slope
belonging to the cell. The plot ck vs. xk can tell us a lot about the linearity of points from
the cell. When all points are ∆b-collinear then ck = const equals to K (K−1)/2 where K
is number of points xk . The points for which ck = 1 indicate pairs that are ∆b-parallel,
but they are offset along the y axis from the points with large values of ck . To draw15

a line through points (yk , xk), some points must be removed. First we remove all points
with ck = 1 and then calculate the median of the remaining ck values and reject all
those for which ck is less than the median. Finally we apply the LSF to the remaining
points (yk , xk) and calculate rms of residuals. This method defines the Langley plot
with a small number of points, but is very efficient in detecting the subsets of collinear20

points. For this reason we did not require that the number of retained points had to be
larger than n/3 for this method. We labeled this method H-β.

A similar process can be performed with the histogram of intercepts Hα(a,∆a). The
results, however, were not as good as with the histogram of slopes. However, the his-
togram of intercepts can be used very effectively in filtering the set {xk} obtained from25

the histogram of slopes. From the histogram of intercepts we obtain sequences {xm}
from its maximum cell. The cross-section {xkm} = {xk}

⋂
{xm} contains the points both
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∆b-parallel and the ones that produce intercepts in the interval amax ≤ ai ,j ≤ amax+∆a.
This filtering process was not yet implemented as an operating program, but it makes
the removal of points for which ck = 1 and filtering with median on ck values unneces-
sary.

In Fig. 1a–d we show three cases on which the H-β method fails and one case5

with a large number of outliers for which H-β works correctly. The cases are shown to
illustrate the usefulness of histogram analysis in prescreening cases and possibly de-
signing a more sophisticated method that could produce, not one, but several Langley
plots from one set of points P .

In Fig. 1a there are two regions: 2 ≤ x ≤ 2.12 that contains 46 points and 3.51 ≤ x ≤10

4.16 that contains 19 points. These two regions produced two mono-modal, narrow
histograms, implying that there are many collinear points from within two regions.

In Fig. 1b there are two regions with collinear points. But each region has a different
slope and it extrapolates to a different α. Both histograms are bimodal. Two distinct
Langley lines could be produced in this case. Only one, if either, can be right. The15

question that one of them or both are anomalous Langley plots can be posed.
The Fig. 1c show a very interesting case. The histogram of slopes is mono-modal,

but the histogram of intercepts is bimodal. The height of the second mode is less than
half of the dominant mode. Two regions 2.25 ≤ x ≤ 3 and 3 ≤ x ≤ 6 have similar slopes
as they produce the mono-modal histogram of slopes. But at x = 3 there is a step20

change. It is not possible that it was produced by a change in the optical depth if one
excludes the change in ε responsible for the anomalous Langley. It is possible that at
x = 3 something affected the responsivity of the instrument. In this case we will get two
Langley plots that are almost parallel with different α’s.

Figure 1d depicts a case without major outliers. The points can be fairly well ap-25

proximated with the 3rd degree polynomial (a thin line is depicted) which means that
τ is the 2nd degree polynomial of air mass. Both histograms are bimodal and rather
broad. One may pose a question whether histograms could be used to detect nonlin-
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earity. The method proposed by Kuester et al. (2003) has the potential for detecting the
nonlinearities, however, it seems that the authors did not explore this possibility.

8 The data set

The comparison and analysis of Langley algorithms was performed on a data set pro-
duced by the Rotating Shadowband Spectroradiometer (RSS) (Harrison et al., 1999)5

deployed at the Department of Energy Southern Great Plains (SGP) site near Billings,
Oklahoma, USA (36.6044◦N, −97.4853◦W) between May 2003 and December 2008.
The data set analyzed covers the period from 5 October 2003 to 30 March 2006, i.e.,
1055 days. We removed many overcast days and several corrupted files that, together
with the instrument down times, reduced the data set to 1023 morning or afternoon sets10

P = {(yi ,xi ) : 2 ≤ xi ≤ 6}. Data from one pixel, out of 1024, at approximately λ = 500 nm
are used in this analysis.

The RSS was lamp calibrated every two to three weeks with calibrators that had
lamp calibrations traceable to a NIST standard. The values of V were normalized by
the responsivity obtained from each lamp calibration and interpolated between the cal-15

ibration days. This reduced trends in V0 due to the instrumental instability caused by
optical elements aging, diffuser degradation, and CCD response changes. Neverthe-
less, the RSS displayed quasi-periodic instabilities due to, what we later discovered,
was an outgassing problem that led to a deposition of a thin film on the cooled window-
less CCD. This resulted in a wavelength- and time-dependent etalon effect that affected20

the CCD’s response. Lamp calibrations mitigated the effect, but did not remove it from
the data completely.

9 Comparison of methods

In the previous sections we described 11 methods to identify a Langley plot. In this
section we compare them at four different values of rmsmax = 0.010, 0.008, 0.006, and25
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0.004 using one data set. First we look at some statistical parameters concerning ∆α
between each two methods, and then we look at calibration constant time series de-
rived from each method.

In Table 1 we collected information on the number of Langley plots for each method
(in the diagonal of the table) and the number of common Langley plots between the two5

methods (above the diagonal). Then we included some statistical parameters on ∆α
between each of the two methods; there are 55 combinations. Above the diagonal is the
SD of ∆α, and below the diagonal mean and median of ∆α. The order of subtraction
in ∆α is as follows: α for the method from the row minus α for the method from the
column.10

The LSF methods produce the largest number of Langley plots (601 and 598) while
the OA the lowest (284). The OA’s α’s are larger than any other method by 0.0026–
0.0065 which translates to 0.26–0.65 % in V0. For most cases medians of ∆α are 5 to 10
times smaller than means of ∆α. This is because the main contribution to differences
∆α among methods comes from the tails of ∆α distributions. In other words, outliers15

are responsible for the main differences among the methods, however, some biases
exist among them. A large median ∆α indicates that the bias between the methods
given by a mean is real and does not apply only to the outliers. In Fig. 2 we looked at
the average of all SDs as we started eliminating Langley plots obtained after removing
a large numbers of outliers. If no more than 10 % were outliers, the average of the SD is20

10 times smaller than if up to 77 % of the data from which Langley plots were obtained
were outliers. At the same time the average of absolute values of means of ∆α drops
only by factor of two. In fact, it stabilizes when no more than 25 % of the data points
were outliers. This indicates the real bias between the methods. The median remains
virtually unchanged. This just means that when the Langley plot consists of a smaller25

number of points the outcome is more method dependent.
Also, we plotted the number of Langley plots vs. the number of points remaining in

the Langley plot for the LSFSRO-x method.
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The Theil and Siegel methods (TOSM-β, TOSM-α, SOSM-β, SOSM-α) produce very
similar results among each other with some of the lowest means and medians of ∆α. In
some cases medians are zero. We could not discern a difference between the “intercept
first methods” (TOSM-α, SOSM-α) and the “slope first methods” (TOSM-β, SOSM-β).

LSFSRO-x yields larger α than LSFSRO-1/x (by 0.0055). For rmsmax = 0.010, 0.0085

and 0.004, it is 0.0083, 0.0065 and 0.0039, respectively. The SD of 0.0198 is not ex-
ceptionally large or small in comparison with other methods.

The Siegel methods with sequential removal of outliers (SSRO-β, SSRO-α) yield sig-
nificantly different numbers of Langley plots (364 vs. 475). But on the common set the
mean and median of ∆α are very small.10

The results for the histogram method H-β do not indicate anything extraordinary. Its
results are most similar to results produced by Siegel methods and LSFSRO-x.

The outlier sorting method when applied to OA increases the number of Langley
plots by 75 %. On the common set of data the OAOSM produces smaller α’s (by 0.0028).
This is the opposite effect of OSM compared to NPF methods (see Sect. 5). The extra15

Langleys produced by the OAOSM method do not necessarily indicate an improvement.
Many of them are large outliers in the time series. We conclude that the OA, if it errs,
it errs on being conservative, i.e., it has a fairly large missed detection rate (rejecting
data sets with viable Langley plots), and at the same time the ones that are detected
sometimes could be improved by a removal of few extra outliers.20

When evaluating individual plots, and we looked at almost all 11×1023 of them,
we found for each method cases when it went astray. There were cases of missed
detection and false detection when judged by eye. However, we cannot quantify which
of the algorithms has the most favorable missed and false detection rates. Out of all
algorithms used, only OA deals explicitly with curvature. This perhaps might be a chief25

reason why it produces significantly fewer Langleys, which leads to a smaller number
of large outliers in the time series.

The comparison of calibration constants that can be derived from α’s obtained by
each method gives us additional insight about each method as well as a strategy one
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should use when generating the calibration constants. We compare the behavior of
time series of derived calibration constants αcc(d ), where d indicates each day from
5 October 2003 to 30 March 2006. The αcc(d ) are obtained from the time series of
α(dj ) independently for each Langley method. The αcc(d ) might be considered “the
best” estimate of the calibration constant for a given day, “the best” in a sense of the5

method that we use to remove outliers, interpolate and smooth the series α(dj ).
The method consists of a moving median window of width dmed days that removes

outliers and interpolates, which is followed by a moving a boxcar filter. For each day
d the median is calculated from dmed number of α(dj ) values: dmed/2 values for dj ≤
d and dmed/2 values for d < dj . Then the 1055 long series αcc(d ) is smoothed with10

a boxcar filter of dsmth days. By trial and error we decided on dmed = 30 days and
dsmth = 25 days.

Prior to applying the method described above, the values of α are corrected for
Earth–Sun distance a by a substitution α← α+2ln(a), where a is in astronomical
units. The Earth–Sun distance is calculated with the ephemeris program published by15

Michalsky (1988).
One of the methods of time series smoothing of V0’s to obtain the absolute cal-

ibration constants of a sun radiometer (MFRSR) was validated against calibrations
at Mauna Loa by Michalsky and LeBaron (2013). The discrepancy between the time
series smoothing and Mauna Loa calibration constants in terms of V0’s were always20

smaller than 0.6 %. This at air mass m = 2 translated to aerosol optical depth uncer-
tainty of less than 0.003 and at m = 6 to less than 0.001. This MFRSR was located in
Salt Lake City, Utah, which, in terms of number of sunny/clear sky days is somewhat
superior to the SGP site. The OA method was used to identify the Langley plots and
obtain individual V0’s.25

In Fig. 3 we show all 11 αcc(d ) curves and individual intercepts α’s from OA and H-β
methods for rms≤ 0.006. In the course of 1055 days the RSS’s calibration constants
vary within ±3.5 % (in terms of V0) band. All methods follow these changes however
there are differences among them. Statistically, the differences are ±1.4 % for 95 %
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of days from the calibration constant curve that is the average of all 11 curves. For
other values of rmsmax: 0.010, 0.008 and 0.004 the differences are ±1.6, ±1.45 and
±1.4 %, respectively. The effect of the maximum rms on the differences between the
αcc(d ) curves is not very dramatic. This is because the parameter dmed = 30 days of
the median filter is relatively large.5

In Fig. 4 we show 9 calibration constant curves and intercepts α’s for LSFSRO-x and
SSRO-α methods for rms≤ 0.010. In this case we used α‘s from Langley plots that had
no more than 10 % outliers. The OA and H-β results did not pass the filter of 10 %
outliers only. The differences between the calibration constant curves are ±0.8 %. For
40, 30 and 20 % outliers, the calibration constant curves are within ±1.2, ±0.9 and10

±0.87 % bands, respectively. So, the effect of number of outliers removed to obtain
a Langley plot has a larger effect on the spread among the methods than the effect of
rmsmax.

We note that the OA and H-β calibration constant curves from Fig. 3 are marginally
within the band defined by the curves in Fig. 4.15

The majority of points in Fig. 4 are outliers and they are defined by Langley plots with
90 % or more points. By the criterion rms≤ 0.01 the points are collinear. Nevertheless,
they are off and some by more than ±5 % (in terms of V0). In our opinion, the majority
of the outliers are cases of anomalous Langley plots. The topic of anomalous Langley
plots will be pursued in another paper.20

10 Conclusions and summary

Eleven Langley plot methods were compared. Two of them were the least square meth-
ods and nine were non-parametric methods which included the objective algorithm
(OA) method by Harrison and Michalsky (1994).

We developed two methods to terminate the non-parametric methods in order to25

determine the existence of the Langley plot: the outlier sorting method (OSM) that was
applied to two Thiel (1950) and two Siegel (1982) methods, and a new non-parametric
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method of sequential removal of outliers (SRO) was applied to two Siegel methods
resulting in two new iterative Siegel methods.

We found that analysis of histograms of slopes and intercepts can be an excellent
tool to prescreen a data set for Langley-plot viability. The histogram of slopes was used
to generate Langley plots that produce lines defined by a small number of points. The5

histogram method offers a possibility to extract Langley plots when outliers dominate
and to find all subsets of collinear points.

The OA method turned out to be robust though conservative. It identifies the lowest
number of Langley plots. It produces intercepts slightly larger than all other methods.

The Siegel (1982) and Thiel (1950) methods with OSM produce very similar results.10

The two least square methods yield the largest number of Langley plots, with expected
bias between them.

The largest differences among methods are on Langley plot cases that turn out to be
outliers in terms of the calibration constant curve. Predominantly these are the cases
that produce Langley plots, but with a small number of points. In cases that are close15

to the calibration constant curve the differences are small, but there are systematic
biases.

We have no way of determining which of the methods produces results closest to the
truth. In fact, the answer may depend on the data set. When the number of outliers in
a Langley plot is small, all methods tend to produce similar results.20

The metrics used to define the Langley plot was rms of residuals. The effect of the
value of rms, whether it was 0.10 or 0.06 had no great impact on the calibration con-
stant curves: all methods produced calibration constant curves within a band between
±1.4 to ±1.6 for 95 % of days. It is the number of outliers in the data set that has
a greater impact. The calibration curves generated using a smaller number of Langley25

plots with each Langley defined by a larger number of points produce calibration con-
stant curves that are less dependent on the method. For instance when Langley plots
retain 80 % of the points all calibration constant curves are within ±0.9 % band for 95 %
of days.

4210

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/4191/2015/amtd-8-4191-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/4191/2015/amtd-8-4191-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 4191–4218, 2015

Non-parametric and
least squares

Langley plot methods

P. W. Kiedron and
J. J. Michalsky

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The outliers from the calibration constant curves are predominantly caused by
anomalous Langley plots when the optical depth has a hyperbolic component as a func-
tion of air mass. This effect cannot be detected from the data set, and no Langley plot
method can determine if this hyperbolic change with air mass is occurring. This effect
at difficult sites like the SGP ARM site in Oklahoma sets the ultimate limit of accuracy5

of in situ calibrated sun radiometers.
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Table 1. The comparison among 11 Langley methods for rms≤ 0.006. Number of successful
Langley plots is on diagonal. Above the diagonal the number of common Langley plots for two
methods and a SD of differences ∆α. Below the diagonal the mean and median of ∆α. The
order of subtraction in ∆α is as follows: α for the method from row minus α for the method from
the column.

LSFSRO-x LSFSRO-
1/x

OA OAOSM SOS-β SOS-α TOSM-β TOSM-α SSRO-β SSRO-α H-β

LSFSR0-x 601 588
0.0198

284
0.0071

485
0.0141

537
0.0190

539
0.0188

522
0.0190

525
0.0190

361
0.0096

450
0.0135

414
0.0164

LSFSR0-l/x −0.0055
−0.0002

598 283
0.0143

479
0.0258

535
0.0203

537
0.0228

523
0.0217

526
0.0210

361
0.0192

448
0.0171

414
0.0201

OA +0.0043
+0.0029

+0.0065
+0.0035

284 284
0.0037

281
0.0118

281
0.0108

278
0.0103

279
0.0107

264
0.0071

277
0.0075

277
0.0077

OAOSM +0.0051
+0.0009

+0.0111
+0.0017

−0.0028
−0.0026

499 475
0.0178

477
0.0163

463
0.0142

466
0.0148

340
0.0085

411
0.0133

361
0.0113

SOSM-β +0.0029
+2×10−5

+0.0075
+0.0012

−0.0044
−0.0031

−0.0045
−0.0010

564 561
0.0040

536
0.0103

538
0.0100

351
0.0141

436
0.0144

398
0.0373

SOSM-α +0.0038
+0.0004

+0.0088
+0.0014

−0.0041
−0.0028

−0.0039
−0.0009

+0.0008
0

564 537
0.0096

539
0.0095

353
0.0132

437
0.0137

398
0.0372

TOSM-β +0.0036
+0.0003

+0.0085
+0.0013

−0.0047
−0.0029

−0.0042
−0.0007

+0.0009
0

+0.0001
0

541 541
0.0019

348
0.0097

428
0.0110

390
0.0369

TOSM-α +0.0036
+0.0005

+0.0086
+0.0015

−0.0048
−0.0029

−0.0043
−0.0005

+0.0010
0

+0.0003
0

+0.0002
0

544 350
0.0101

430
0.0110

391
0.0367

SSRO-β −0.0005
−0.0007

+0.0036
−0.0002

−0.0048
−0.0046

−0.0029
−0.0023

−0.0005
−0.0011

−0.0007
−0.0013

+4×10−5

−0.0010
−0.0001
−0.0010

364 352
0.0043

328
0.0061

SSRO-α −0.0004
−0.0007

+0.0038
+0.0006

−0.0054
−0.0045

−0.0053
−0.0031

−0.0011
−0.0014

−0.0016
−0.0015

−0.0011
−0.0011

−0.0012
−0.0011

−0.0008
−0.0004

475 375
0.0064

H-β +0.0006
−0.0006

+0.0031
+0.0001

−0.0046
−0.0037

−0.0035
−0.0023

−0.0039
−0.0010

−0.0046
−0.0014

−0.0042
−0.0011

−0.0043
−0.0011

+4×10−6

+0.0007
+0.0006
+0.0011

434
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Figure 1. Four cases that illustrate how slope and intercept histograms can aid in analysis
of points for the extraction of the Langley plot. In (b) and (d) both the slope and intercept
histograms are bimodal. In case (c) only the histogram of intercepts is bimodal. Case (a) has
many outliers, but both histograms are mono-modal indicating the existence of a single Langley
plot. Case (d) has no large outliers, but y vs. x is nonlinear (3rd degree polynomial).
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Figure 2. The average over all methods of SDs of ∆α as a function of number of points in
a Langley plot.
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Figure 3. Calibration constant curves for all 11 methods (rms< 0.006) and individual intercepts
α for OA and H-β methods.
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Figure 4. Calibration constants curves for 9 methods (rms< 0.01) from Langley plots with no
more than 10 % outliers and individual intercepts α’s for LSFSRO-x and SSRO-α methods. (The
OA and H-β results did not pass the filter of 10 % outliers only.)
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